Motivation

Failure

I’m an old queen. Whatever you’re thinking that’s probably not it. In 2013 I competed in the annual Eugene SLUG Queen Competitionand won. I am Old Queen Professor Doctor Mildred Slugwak Dresselhaus[1], named in honor of the late great Queen of Carbon Nanonscience, Millie Dresselhaus[2]. It wasn’t my first time competing for the crown, you see, I tried in 2012 and I failed. We put up a valiant fight, bribing the old queens with the gift of SCIENCE! for the masses [3]. It was a close thing, but I was edged out by Queen Sadie Slimey Stitches and her Naughty Knitters. 

It’s not my defeat in 2012 that makes me cringe though. It’s what came after winning. SLUG Queens started out as a sort of kitschy joke, but sometime in the early aughts the queens upped the ante and started advocating for causes. It is now traditional for the Raining Queen [4] to hold a gala fundraiser for her chosen cause. I was the first (and so far only) Science Slug Queen and I was raising awareness and money for the SPICE program. For months I worked on beautiful posters, collecting donations, getting out word of mouth on social media, and planning a night full of fun science activities. The gala was lovely . . . and about 25 people came for a space designed to hold 200. Ouch! The only thing that save the event from taking a loss was the heroic MC work of Old Queen Bananita who cajoled and amused the few folks on hand to buy enough stuff from our auction to get us (barely) into the black.

I made lots of mistakes along the way to my very public face-plant. Just thinking about it makes my eyes go squinchy. I keep the lovely poster made by my friend and co-conspirator Pinky (aka Jen Weber) in my office as a reminder. Failure is never far away.

I am a motivational researcher. Understanding the impacts of failure is key to understanding all sorts of aspects of motivation (identity and self-efficacy being two big ones). I spend a lot of time proclaiming the value of failure in learning, but I’m gonna be straight with you, failing sucks. It’s no fun to take a risk and fall flat on your face. No one likes to feel incompetent or foolish, especially in front of witnesses. The desire to avoid this kind of embarrassment can lead to some pretty impressive avoidance strategies. Adolescents and youth in particular are keenly tuned in to the dangers of social embarrassment. Many pre-fossils like myself have any number of embarrassing stories we can trot out for amusement now that we are at a remove (and I do think being able to laugh at your own mistakes is a sign of maturity), but I bet most of us also have a few we do not care to share, even decades later (I know I do).

Science, by its very nature, is a process of failure. Failure is not merely an option in scientific inquiry, it’s a prerequisite to even the most humble success. Consider the scientific method:

Ask a question

(admit you don’t know something)

Investigate

(learn more, because you don’t know enough)

Hypothesize

(take a risk by making a guess)

Design

(try to figure out how to answer your question)

Test

(collect some data and hope it makes sense)

Analyze

(can you figure out what you did actually means?)

Share

(tell the world all the ways in which you were wrong, and if you are very lucky the one or few things you got kind of right)

Scientists become old friends with failure. More like frenemies who don not actually like each other and engage in a lot of one-upmanship. One of the ways scientist do this is by contextualizing failure and making room for it in the process. Scientists know they aren’t going to get everything right the first time, they build a learning curve into their experiments, reach out to experts for advice, and collaborate with people who have experience. They document their failures and try again, hopefully having learned something that will help with future attempts. 

The scientific community is actually experiencing a problem right now. There’s a heavy bias in the publishing of data only to report positive results. Negative results (aka failures) rarely make it into the literature which is resulting in duplication of effort and an incomplete picture of what is actually known. After all, if you’re trying an experiment, wouldn’t you like to know if someone else did it before and found it doesn’t work? Often, when learning new things there is value in repeating something that’s been done before, even if it doesn’t work. Just as often it’s just a big waste of your time. Why do that? But our fear of failure and collective bias toward success is creating a problem. 

Failure becomes particularly problematic for out-group members. If you read my Nerding While Female post, then you have heard at least a little of how women’s membership in male dominated identity groups such as sports fan, cultural geek, and science are often subject to heavy gatekeeping and policing. Any time an individual is not perceived as a natural member of a group this extra barrier to membership identity can be found. For in group members, failure is just a small set back. For outgroup members failure is yet another symbol of not belonging. Couple this with the fixed mindset that often manifests in out-group members seeking entry and stereotype threat (illustrated beautifully in this comic) and failure becomes a serious threat to integrating a science identity for anyone who does not fit the scientist stereotype.

There is hope though. There are ways to make failure into an ally.

First and foremost educators and mentors can help students contextualize failure. Often when students are first introduced to the scientific method they think the goal is the come up with the correct hypothesis and prove it. This can make science projects a crushing experience when they should be an exciting process of discovery. When teaching science fair projects through SPICE, we always emphasize that a hypothesis is just your best guess and that the point of the process is to learn something new. There is no “right” answer. Doing it right means being thoughtful, observant, and analytic. The most valuable thing any scientist can do is find and proudly share her mistakes and incorrect assumptions. Mature scientists spend far more time on the shortcomings of their work than on the successes [5]. Understanding what went wrong is so much more valuable than getting everything perfectly right the first time. 

Failure is only true failure if you didn’t learn anything. 

In SPICE we tell our girls that failure, is not only an option, but a prerequisite for any scientific endeavor. Perseverance, analysis, and a good sense of humor when it comes to your own mistakes are the most important skills for being a scientist. 

Use failure as a sharing opportunity. Whenever we carry out a complex of difficult experiment in SPICE I ask for volunteers who want to share their failures and what they learned from them. Hearing that others have flopped is a powerful learning experience. My favorite times are when students learn from the mistakes of others. Once at an engineering Saturday workshop a team shared how explained how they had tried something a little different with their structure that had not worked and another girl piped in, “I saw what they did and I thought it was really cool, but it wasn’t working. So I tried it with a different setup and it worked great. I would never have figured it out if I hadn’t seen their idea.” 

When you provide a space for sharing failure it helps others learn from your mistakes and creates a shared sense of what it means to be a learner who fails. Students who started out with hanging heads or frustrated glares are soon laughing at their peers stories and sharing their own face plants.

“I can tell you one, thing,” said one of the campers I interviewed. “I don’t know how to get that experiment to work, but I can tell you 5 ways it won’t!” And that is a beautiful thing.

***

[1] NOT former, darling. Once a Queen, ALWAYS a Queen. We’re all Old Queens here.

[2] Yes, I asked her permission before using the name and she was “tickled” by the idea.

[3] Bribery is traditional and I like to think I elevated it to a new level. We set up tables in the square and did free science activities will all the kids and families who attended.

[4] Nope, not a typo. Slugs love rain and it the Pacific Northwest after all.

[5] Though sometimes we can go overboard on the qualifications.

Growing the Gap

There’s plenty of evidence that k-5 children (boys and girls, white and minority) have a pretty strong interest in science and are confident in their science abilities. We also know that STEM careers tend to be dominated by white men. So what is happening in the tween to adult years that results in the gender STEM gap? Well, a lot. 

Ignoring the simplistic, and thoroughly debunked answer that girls just don’t like science, there isn’t just one answer to this question. There are many answers that when stacked together paint a rich portrait. While not all explanations apply to all girls, the layers and layers of small barriers and messages form what J Clark Blickenstaff calls the gender filter

There are so many layers to this filter that I cannot possibly cover them in one blog post (or many, many blog posts). I’m an identity researcher, so I’m going to focus on explanations around identity. Also, because I think that understanding these elements is the key to correcting the gender gap in STEM.

Even though young children express enthusiasm for science and confidence in their science abilities, gendered inculturation into science and math is already at play as early as second grade in the form of implicit bias and gendered associations [1]. Very young children have already absorbed stereotypes about who is more suited to careers in math (and science) and who is “better” at math and science. These early perceptions of suitability play a pivotal role in later decisions.

As I’ve mentioned before, middle school is a very important time for identity development. Kids begin trying out different identities, processing feedback about their identity performances, and making important choices about who they are, and perhaps more importantly, who they are not or cannot be. This is also a crucial time for establishing gender identity, testing out sexuality, and finding social niches. I think most people who’ve been through middle school can remember this time pretty vividly. The pressure to find a place of belonging and avoid social shaming is powerful. When you add to the mix gendered notions of science as being the native realm of (white, cis, hetero, upper middle class) boys - and unflattering stereotypes of scientists as asocial, obsessive, geniuses - a female science identity becomes quite fraught. For most girls, trying on a science identity is a risky proposition that could undermine a more socially desirable identity as feminine and sociable. 

11-Gap sm.png

In their hugely influential studies of tween and teen youth, science identity ninjas Archer and Dewitt [2] have described the very circumscribed path toward a female science identity. Basically, girls have two choices in successfully integrating a science identity, neither of which is reasonably attainable by most girls. The first example is the well-rounded, socially adept girl. This is the girl who can do it all, sports, academics, social-status. You know this girl. She’s the one you desperately wanted to hate in high school, but you couldn’t, because she was just so nice and awesome, and her hair was super shiny and always looked great - but like she didn’t even try, she just rolled out of bed fabulous without any makeup and could spike a volley ball like some sort of Grecian goddess. She could be a cheerleader and captain of the brain bowl team. She built houses for poor people in Honduras, where she spoke flawless Spanish. Dammit Alicia O’Brien [3], you haunt me.

So yeah, that’s not an option for any but the .01% of Alicia O’Briens in the world. The other option Archer and Dewitt observed where what is known in the UK as “blue-stocking” scientists. These are girls who strongly identify with academic pursuits and have largely desexualized themselves. They typically have parents who take a strong hand in the daughters education and discourage the normal socializing and gender goofing off of early adolescence. You know this girl to, she’s serious, hard-working,  intellectually intimidating, but not socially threatening. She’s above the game. This identity is also not terribly accessible (or desirable) for many girls. 

Imagine, you are a middle school aged girl. You’ve already absorbed the implicit bias that science and math are the natural realm of boys. You probably think (though you may not admit it) that being good at math and science requires an innate talent (see fixed mindsets). Even if you are pretty good at math and science your performance in those areas doesn’t impact your interest in them as much as it would for boys, because most careers in math and science are not really “thinkable” for a girl. So, when you’re choosing extracurricular activities, you’re less likely to choose math and science options that conflict with your feminine (or non-binary) gender identity. Even if you’re an academically high performing student, you view math and science instrumentally, as hurdles to climb to get where you want, rather than interesting journeys to take just for the wonder. Over time these small biases and little choices feed into growing identity gaps and a future in science seems less and less like “you” as other things (art, sports, social ties) become more integrated into your sense of self.

In this way, the narrative around choices about science and identity get muddled and feel less like a narrative of oppression and exclusion and more like a natural arc. These choices away from science and toward something else were simply the journey to being who you always were. Sure, you liked science as a kid and you enjoy a good podcast about developing a missions to Mars, but science is not a part of who you are

I like to tell a story about when my son was very little. Between the ages of 2-4 my son had a plan, and it was the best plan ever. When he grew up he would spend his days as a construction worker using massive equipment to tear down roads and buildings and then build other roads and buildings. By night he would be a janitor, cleaning up all the grossest messes of the world and vacuuming up all the spiders. In between he would sneak in princess time, art, and legos. He had all the accoutrement for these vocations. Big dump truck and excavator with real moving arms. Check. Janitor cart with feather duster, spray bottle, and working mini vacuum. Check. Art supplies and Legos. Check. Closet full of mermaid princess costumes. Check.

In the mind of a three year old, there are no limitations. You can literally be anything you want and you can be as many things as you want. Researchers, parents, and teachers, spend a lot of time and effort talking about adolescence, what it is, what it means, what’s happening. For me, the biggest discovery of adolescence - I mean, big flashing 50 foot tall sign type of discovery - is scarcity. This is the time when you realize, “Oh wait, I can’t be a cowboy, ballerina, astronaut, president. I’ve got to narrow this sh!t WAAAY down.” The world suddenly becomes very big and very small all at once. There’s an infinite array of choices, but you’ve got to pick and you’ve got to pick while walking a tight rope balancing 5 plates with a weasel crawling around in your hoodie. So just like hiring managers pouring through massive piles of resumes, you start looking for quick and easy disqualifiers [2]. There’s a typo on this resume. Trash. This person doesn’t have a degree. Trash. There are very few girls scientists. Trash. Science is for boys. Trash. I’d have to give up a lot to be a girl scientist. Trash.

So . . . is there nothing we can do? Is this just a viscous cycle of inescapable socialization? Not at all! There are some really great rays of hope. After all, lots of girls (not half, but still a good chunk) do choose science and there things we can do to help more girls view science as “thinkable.”

Leaping the Gender STEM ChasmImage Credit: P. Kim

Leaping the Gender STEM Chasm

Image Credit: P. Kim

Bucking the Trend

Among girls and women who identity with scientists, two common themes emerge in their narratives of how they came to love science: mentors and peers. 

Opening Up the World of Science

Every girl I have ever spoken to who identifies with science talks about a teacher [3]. They talk about teachers who brought so much enthusiasm and passion to science that their love for the subject was infectious. They talk about projects and activities that encourage creativity and centered on investigation. They describe instruction that enables students to see themselves as agentic beings in the world of science.

“He made science feel so fun it didn't really feel like the science that we

used to do.”

“Well, she's just fun! I mean, she won't let you off if you don't finish your homework, [but] she just finds a way to make everything interesting.”

In their excellent 2014 paper, Carlone, Scott & Lowder juxtapose two different classrooms. In the classroom of 4th grade teacher Ms. Wolfe the idea of what makes someone good at science is broadened to include creativity, supporting the learning of peers, and asking interesting questions. In Ms. Wolfe’s classroom the “celebrated figure” of the scientist was constructed much more inclusively than the fuzzy haired old white dude of stereotypes. Children had many venues to develop their own style and approach to building a science identity. None of which were centered on getting the “right answer.” A diverse array of children in Ms. Wolfe’s class identified as being good scientists. Each had his/her own way of being a good scientist that was personal and included their own intellectual and social strengths. Enthusiasm for the subject was high among her students.

Two years later, the same students were in the classroom of Mr. Campbell which was structured around the traditional ideas of completing worksheets and getting right answers. Knowledge in this classroom was passed from the teacher to the students and questions were for clarification, not creativity or curiosity. Gendered ideas about science were prevalent in the classroom. It was clear that Mr. Campbell, while thought of as a nice and “fun” teacher, was rooted in traditional ideas of what it takes to be a good scientist (compliant, perfect, organized). There was a notable dip in enthusiasm for science in Mr. Campbells class and a much narrower field of students who identified (and were identified by peers) as scientists.

How teachers approach the idea of the scientists and the role of students in their science education can make a difference in students identity development. I’ve said it before, and I’ll keep saying it long after everyone just rolls their eyes and says, “I know, mom/Dr. Todd, I know!” Welcoming all children into the world of science and supporting the adoption of science identities is as, if not more important, than the content we teach them. 

Peers: Push and Pull

Another theme I’ve observed in the literature and from my own research is the presence of science-engaged female peers. Girls who unabashedly enjoy science and pursue it with vigor have peers and friends who share their interest. Having a group of friends to “nerd out” with and do experiments with is a way to overcome the gender STEM thinkability gap. The girls with the most positive outlooks about their future as scientists, in my research, are the ones who talk about doing science experiments at home with friends. They talk about taking apart electronics picked up at thrift stores, weekends spent wrecking the kitchen doing chemical reactions, and doing school science projects together.

Outside-of-school time with peers also appears as a theme in developing science identities. Tan and colleagues (2013) document an instance of one girls journey from a disengaged science student, to a fully-fledged science identity through an after school environmental science club. Kay, found a voice, and the respect of peers through the informal science club where she used her social skills and drive to become a science leader.

 Peers can just as easily pull girls away from science. Tan and colleagues also found that jumping into more difficult science classes had social costs for minority girls who found themselves as one of the only non-white students in their classrooms and also due to scheduling conflicts, no longer shared classes or lunch time with their longtime friends. The pull to remain with fellow minority peers who understood their history and personality was strong for girls in this position. Many girls may feel a loss of connection with friends who do not share their interest in science, while boys will be much more likely to find relatable peers in the science milieu.

Concluding Thoughts

For girls who find passionate, inviting science teachers and peers who share their interest, science can be a wonderful playground of discovery and integrate into an enduring identity. Of course, finding those teachers and peers is the trick no, isn't it?

In my own research, however, I have found that just one teacher who welcomes girls into the world of science can make a huge difference, especially when girls can maintain contact with that teacher. Some do this by volunteering in their old classrooms and through clubs and special projects. 

Parents can also play a role in helping girls build science engaged peer groups. More than a few girls I’ve known have “tricked” their friends into enjoying science with the help of parents. Families who have the time and resources to invite friends along to science outings (nature hikes, museum visits) can help foster interest in their daughters peers. Some parents go above and beyond, providing girls with fun weekend science activities, often bringing in elements of creativity that appeal science and non-science oriented children. I’ve known parents to weave arts and crafts and baking into lessons on chemical reactions, reflected light, and botany. It can be a tall order, especially for parents who themselves feel intimidated by science, but even an occasional small activity in which girls are free to explore the scientific world, outside of school, among friends, can be a powerful bonding experience.

~~~~~

[1] Yes, Alicia is real. No that’s not her name. Yes, she really was just the nicest person ever.

[2] Yes, I like metaphors. It’s not technically mixing metaphors if just serially stack them on top of one another.

[3] In a sad corollary, I have also heard plenty of tales from girls about how a teacher has damaged her connection to science or a particular discipline.

~~~~~

Archer, L., et al. (2013). "'Not girly, not sexy, not glamorous': primary school girls' and parents' constructions of science aspirations." Pedagogy, Culture & Society 21(1): 171-194.

Blickenstaff, J. C. (2005). "Women and science careers: Leaky pipeline or gender filter?" Gender and Education 17(4): 369-386.

Carlone, H. B., et al. (2014). "Becoming (less) scientific: A longitudinal study of students’ identity work from elementary to middle school science." Journal of Research in Science Teaching 51(7): 836-869.

Cvencek, D., et al. (2011). "Math-gender stereotypes in elementary school children." Child Development 82(3): 766-779.

Todd, B. (2015). Little Scientists: Identity, Self-Efficacy, and Attitudes Toward Science in a Girls' Science Camp. Educational Methodology, Policy, and Leadership. Eugene, OR, University of Oregon. PhD: 313.

Simplified Identity Formation Theory

Welcome to theory corner! Today’s blog post is addresses identity theory in the context of science motivation. 

Identity, in the psychosocial sense, is the means by which individuals comprehend themselves to be unique and discrete from others but also connected to others through social affiliations. Identity is a balancing act between distinctiveness and affiliation resting on a sense of continuity, or personal narrative..

Erik Erikson (born 1902) was a guy who understood what it is to have identity issues. His parents hid his rather scandalous origins from him for many years [1]. Turns out his father was his adopted father. His mother had been married when she became pregnant with Erik by another (never named) man and fled her home in Denmark for Germany. Erikson who was Jewish also had to deal with anti-semitism from Christian Germans and mockery for his Norse looks (probably inherited from his Danish father) from fellow Jewish children.  

Erikson definitely had skin in the game when it came to understanding the importance of the personal narrative in building an identity. He’d had his own identity challenged and unsettled plenty. Despite never holding an advanced degree, Erikson became a preeminent theorist and researcher and is consider the progenitor of modern identity theory. In his work, Erikson identified 8 stages of identity development over the human lifespan that are represented by identity conflicts that individuals must resolve in order to move on [2]. The most studied of these stages is known as “Identity vs Role Confusion”  and covers the adolescence age group. The result of this particular identity conflict has some of the most consequential results for individual identity development. 

A number of researchers have expanded on Erikson’s work. One particular formulation of youth identity development that I’ve found useful in my work and research is the Simplified Identity Formation Theory (SIFT)[3]. SIFT authors Côte and Levine, lay out three key elements of identity development continuityintegration, and differentiation. Building on these foundational concepts they lay out a nuanced, but intuitive approach to thinking about adolescent identity formation. 

Before I dive into the SIFT, I should like to point out that there is no “one” master explanation for human identity development. What I mean by this is not that we haven’t hit on the exact right arrangement yet, but that rather, humans are malleable, social creatures, capable of radically different developmental processes. In the natural sciences we tend to think foundationally. That is, the more we investigate and research the closer we get to understanding the exact way the universe works. Applying this foundationalist approach to the human ecosystem would be a mistake. Conceptions of identity are heavily culturally rooted and the process by which identity formation takes place is dependent on this context. That is to say, what I’m about to describe is a pretty good approach to understanding youth identity formation in the developed world of the early 21st century. 

Côte and Levine present the ideas of differentiation and integration as balancing act mediated by narrative continuity. An individual with a stable identity (personal narrative), feels distinct from others, but also has connections and ties to social groups and individuals. If something about a core narrative (continuity) is challenged or found to be false, the balance can be radically shifted. If the balance gets off kilter, identity crisis occurs. 

To demonstrate the ecological process by which identity formation takes place, Côte and Levine propose a triadic identity model. I’ve taken some liberties with their original elegant model involving a few ovals and arrows to visually represent the various identity types and processes in with a science focus.

Image Credit: B. Todd

Image Credit: B. Todd

At the top we see social identity. This is the level at which individuals are influence by social contexts and pressures to fit into available objective identities. These roles tend to be the “big ticket” demographic items (race/ethnicity, gender, class) as well as socially defined aspirational roles such as occupation or education status, though it’s important to note that not all people integrate their work/education into their identity. That tends to be a feature of the professional more than the working classes.

Social Identity - The surface stuff everyone sees can dictate many identity options and heavily influence even more.

Social Identity - The surface stuff everyone sees can dictate many identity options and heavily influence even more.

Personal Identityis the interstitial zone between social identities and individually unique traits and experiences. This can be thought of as “style” or persona. Personal identity is very important in youth and you can see them trying on and defining a personal style through clothing, interest in cultural properties like music and entertainment, and social roles like “athlete” or “drama kid” or “slacker.”  

Personal identity expression in adolescents often involves dress and persona types.

Personal identity expression in adolescents often involves dress and persona types.

Ego Identity is the individual sense of continuity and narrative and manifests in commitments, goals, and beliefs. It can be thought of as a sense of purpose. All three identity levels have both internal and external components, but ego identity is the most reliant on idiosyncratic nature and differentiation.

Ego identity is rooted in personal narratives about commitments and goals. Family, friendships, career aspirations, and key group associations are part of the personal continuity.

Ego identity is rooted in personal narratives about commitments and goals. Family, friendships, career aspirations, and key group associations are part of the personal continuity.

We talk about identity as though it were a fixed property with events (conflicts/crises) that are resolved for ever and ever, but in reality, identity is a constantly ongoing and shifting process. Once integrated, identities tend to stick around, but they shift in importance and relevance over time and even from setting to setting. 

I like to give this example of a change in identity over time. The summer before 7thgrade my best friend and I spend nearly every day playing badminton in my yard. We got pretty good for a couple of 12 year-olds and when school started we won the 7thperiod girls badminton tournament. Neither of us were at allathletic (I could frequently be found wheezing on the sidelines of gym class or whining about the simplest activities) but we put in the work and for that short 3 day period we were gods of the badminton court. We were praised and mentored by parents, grudgingly acknowledged by peers, and given literal pats on the back by our teacher. We even beat our social nemesis in the final match (despite their attempts to cheat). It had all the makings of classic mini heroes journey. For years, I shared the tale of our victory with anyone who would listen and proudly called myself a badminton player. Over time, as other identities to precedence, badminton queen largely dropped out of my thoughts. But, to this day, when badminton is mentioned, I perk up and will proudly tell the story of my 7thgrade victory. Here’s the thing though. I’m just not that good at badminton. A reasonably well motivated 12 year old could punk adult me. I haven’t even played for years. But somewhere underneath educator, and nerd, and parent, is a tiny little identity as Brandy, Badminton Player. That’s the power of identity.

OK, back to the model. The real meat of the matter is in the interactions between the identity levels and how the social and interpersonal interacts with the intrapersonal.

Starting at the top and moving clockwise on the model (this is entirely arbitrary, you can actually start anywhere), you see how social identity location can limit available personal identities. This limitation takes place in the form of validationand challenges. Take my once four year old son and his love of mermaid princess costumes [4] and you can immediately imagine the sorts of challenges a male child might get to this sort of personal identity expression. Often, individuals don’t even need to get to the point of external identity challenge before discarding a personal identity expression. The mere expectationthat there might be challenges can deter expression. This is where social norms and stereotypes are so powerful.

Adolescents observe behavior and identity expressions.

Adolescents observe behavior and identity expressions.

Take our example girl, she enjoys science and does well at it. She might aspire to become a scientist someday. However, the only models of female scientists she sees are biologists and veterinarians. She also sees lots of messages about scientists being weird and socially awkward. She thinks, maybe a career in marine biology or biochemistry would be good. She could do science and work with animals or help develop medicines in a discipline with plenty of other women. 

Moving between personal and ego identity are individual interpretations of identity displays. This is a processes of internalization of the cumulative validations and challenges (perceived and actual). At this phase the individual synthesizes interactions into the ego identity, makes modifications, and adopts identity strategies for the future. The result is a sense of the “type” of person one is. Some of this work goes on unconsciously and some is very conscious and goal oriented. “How can I fit in with group X? What behaviors or expressions will help me gain status? How can I avoid embarrassment or censure?”

As individuals receive validation they internalize norms, concepts, and behaviors about the forming identity and synthesize them with the internal sense of self.

As individuals receive validation they internalize norms, concepts, and behaviors about the forming identity and synthesize them with the internal sense of self.

As our future marine biologist spends time learning more about science and aquatic animals she’s also learning about how scientists act and how others react to girl scientists. She receives approval for her interest in rescuing wildlife (consistent with gender ideas of women as caring). Family and friends give her stuffed starfish and dolphins and books about the ocean. She hears messages that math is hard, girls aren’t good at math (despite the fact that she performs well in math class) and that a biochemistry career require math. She internalizes the notion that among the sciences, a marine biology career is probably the better fit. 

In next process, the individual self-presents as a member of the identity group using the language and identity displays in social contexts (back to personal identity). Our girl scientist, she refocuses her interest on marine biology, using more of the language and behavior that aligns with a possible career with aquatic animals. She beings using scientific names for animals and becomes familiar with their habitats. She favors clothing that is practical for seaside outings.

The internal becomes external as the individual begins presenting behavior and other symbols of the identity group.

The internal becomes external as the individual begins presenting behavior and other symbols of the identity group.

Finally, social engagement, the individual joins socially with an identity group through conformation to group norms (with suitable individual differentiation) . . . and we’re back at social identity and the pattern continues on ad infinitum. Our girl scientist joins the “Save the Ocean” club and participates on online chats with marine biologists.

Integration into the identity group through collective activity.

Integration into the identity group through collective activity.

In this example, our girl got pretty far into a science identity, but her generalized interest in science was quickly channeled into a “gender appropriate” education and career track. Many girls get filtered out of science entirely early on in this process. The importance of this process cannot be over stated. Research shows that attitudes toward science are usually fixed by age 14 [5].

It is generally accepted in psychology that challenges and negative feedback are more powerful than validation. Adolescents in particular are very susceptible to disapproval by peers and parents [6], but especially peers. They are also keenly in tune to social messaging about suitable identities. 

When you consider that adolescents are navigating a number of major social identities, over which they have little control, it can be very challenging to integrate an identity that complicates a major social identity, like say, gender. Stereotypes of science identities are very much at odds with most validated expressions of gender identity. It takes a hardy, or perhaps reallystubborn kid to go against type and risk compromising a core identity like gender. The situation only becomes more fraught for non-conforming or non-binary gender kids who have to navigate a gender identity that doesn’t fit neatly in the preassigned boxes.

As educators, and parents, and role models, it’s up to adults to help kids reframe these stereotypes and create new pathways to building STEM identities that provide a range of ways to be a scientist that do not imperil or challenge core social identities. These can be done by presenting scientists not only as super smart white dudes with poor social skills. We can present scientists as questioners, facilitators, explorers, problem-solvers, and risk takers. We can offer stereotype defying ways of being scientists with as many flavors as the tee-shirt wall at Hot Topic.

**

[1] Erikson’s life would probably make for a really interesting movie.

[2] Failure to resolve an identity crises is really not fun, but outside of the scope if this article. 

[3] Côte, J. E. and Levine, C.G. (2016) Identity formation, youth, and development: A simplified approach. Psychology Press: New York.

[4] He’s a 14 year old jock now and waves dismissively at me every time I talk about this phase of his life.

[5] Tai, R., et al. (2006). "Planning early for careers in science." Science 312: 1143-1145.

[6] Even though it feels like they live to argue with and dismiss everything we say.

Motivation: It’s not what you think

Motivation is a huge industry in America [1]. Companies pay thousands of dollars for speakers, trainings, and motivational materials for their employees. There are countless apps and gadgets designed to help people accomplish their goals. The “Self-Help” section of any book store is stacked with volume after volume of books designed to unlock your inner potential. Some of these products are based in actual nuanced research, most combine snippets of useful information packaged in with a lot of less scientific advice, and some are just downright garbage.

Built into these products is the notion that all you need to succeed is to find just that one hack or gadget to motivate you. Nothing exemplifies this more to me than the motivational poster. We’ve all seen them. Big framed posters with high quality stock photos and short pithy text. 

It’s not the destination, it’s the journey.

There is no “I” in “Team.”

Dream [2]

They adorn the walls of offices and waiting rooms. They’re so ubiquitous that they’ve spawned an entire counter line of products that play off the trope so well that sometimes it’s hard to parse the sincere from the satirical.

I really enjoy Demotivators, those great spoofs of the motivational poster. They sneak up on you because they look exactly like regular motivational posters. Photos of sweeping vistas, one word concepts in enormous fonts, with a short sentence at the bottom. It’s typically the text at the bottom that lands the punch. My favorite, hands down goes like this:

“Motivation: If a pretty poster and a cute saying are all it takes to motivate you, you probably have a very easy job. The kind robots will be doing soon.” [3]

Here’s the thing about motivation. It’s not really about individuals, or at least not just about individuals. It’s about an entire ecosystem of interaction, experience, and feedback. The notion that individuals can turn their lives around if they just dig deep and find the right motivation is, from a psychosocial standpoint, laughably naïve. Also, it’s beside the point. It’s an old saw that the whole is greater than the sum of the parts, but it’s really true. Societies aren’t just the total of the individuals in them. Societies have their own lives, characters, and far reaching impacts. So many of the problems we experience (opioid epidemic, bias motivated violent attacks, pervasive sexual harassment) are social problems. Addressing systemic social problems at the individual level simply isn’t effective or appropriate. That is to say, just telling girls they should do more science is not going to yield any gains in closing the gender STEM gap.

Image Credit: B. Todd

Image Credit: B. Todd

Motivation is a huge area of study pursued by researchers in education, psychology, sociology, economics, and business, to name a few. It contains many, many subfields that compliment one another. Some researchers focus solely on interest development while others look at curiosity. Yes, those are different things, and let me tell you, both groups have OPINIONS about the difference between the two. Within the area of interest formation one researcher may be looking at brain MRIs while another is administering short surveys to hundreds of students, and a third spends months or even years interviewing model train enthusiasts. What I’m trying to say is that motivation is a big complex field that can’t be pinned down to any one simple hack. I also think it’s safe to say that most of us, aren’t focused on individuals. We use them as our subjects, but we’re not just looking at the actions and thoughts of individuals. We’re looking at social context that produces these actions and thoughts. We’re looking for how social contexts produce (or inhibit) motivation and how they shape the nature of motivation. Let’s take a case of one and look at it.

Like many, many people, I am frequently in a state of trying to lose weight and be healthier in my diet and exercise. I’ve had varying success at this. The healthiest time of my entire life was between 2011-2014. I lost about 30 pounds, took up running, and participated in several triathlons. Let me be very clear, I was that kid in elementary school who HATED gym class. I couldn’t run without having to stop and walk every 30 seconds and could be reduced to tears over the prospect of being asked to climb a rope. Suddenly in my mid 30s I turned into work out nerd. Then between 2014-2017 I gained back all the weight (plus more), got much spottier about my workouts, ate very poorly, and didn’t participate in any formal organized fitness events like fun runs or triathlons. 

So what was the difference between these two three year periods? I was the same person [3] with the same information and abilities during both of these times. What was different was my ecosystem. In the first period I worked in the same office with my best friend and we went to the gym together nearly every day at lunch. She taught me how to run without collapsing into a wheezing ball and I showed up in her office very day with my gym bag excited to spend time with my friend complaining about whatever stupid thing was annoying me. We took swim lessons and learned how to perform a proper crawl stroke and did our first sprint triathlon together. We encouraged and challenged each other and it was fun. 

Then my friend graduated and got a better job somewhere else. It was harder to get together and at the same time my workload skyrocketed. Without someone to be accountable to it was easier to prioritize work over fitness. Stress made eating sugary foods a lot more attractive, and slowly my health routine degraded into an unhealthy one.

And that’s it. I didn’t actually change anything important in my life during these two times. I still did all the same activates with my family and pursued the same hobbies during both time frames, but in one I had a work context that supported fitness and in the other I didn’t. Context is everything. 

I’m not saying that people can’t make meaningful changes in their lives, of course they can, but the answer isn’t “willpower” or “wanting it.” It’s about creating the social circumstances that support success and reinforce desired behaviors. When we start looking at big problems like underrepresentation in STEM, changing context becomes a lot more challenging than finding a running buddy (which can be surprisingly challenging). Providing opportunity and access to underrepresented groups or yes, even helping people lose weight, are social issues that need to be addressed in social contexts. Taking a nuanced view of motivation as an ecosystem in which the individual is just one component doesn’t really sell books, though [4]. 

How can parents who want to support their girls in science change the social context? Can they change the social context? How much power do girls and parents have to create a context that sets them up for STEM success? I have thoughts on this ;-) But for now, I think the most important take away message from this rambling rant is not to beat yourself up for failing to DO ALL THE THINGS. It’s pretty hard to just make yourself do stuff that you don’t normally do. It’s REALLY hard to make yourself feel like the kind of person who does that stuff, which is a pretty important part of actually doing stuff. And if you want the girls in your life to engage more with science, well, engage in science with them! Help create a context that supports doing science. If you want to get really meta, create a context that supports you in creating a context that supports science engagement. . . easy, right? Yeah, no. But I’ll talk about that in future posts.

*****

[1] According to this Market Research Blog Americans spend around $10 billion a year on “Personal Development.”

[2] Well, yeah. I mean, you’ve gotta sleep, so sure. Dream. Also. Respirate. Perspirate. Maybe even Perpetrate (for a good cause). But don’t Suffocate. That would be bad.

[3] https://despair.com/products/motivation?variant=2457303555

[4] Ignoring existential questions as to the ephemeral nature of person hood and identity.

[5] Says the lady who is writing a book about engaging girls with science! 

It’s Just a Theory Right? What Motivational Theories Have to Offer for Closing the Gender STEM gap

As an academic researcher one of the things I do is go to conferences and talk about my research. As a mixed methods researcher sometimes I’m presenting big fat tables full of numbers. Coefficients, effect sizes, p-values, fit indices, all that jazz. Other times I share the words of girls I’ve interviewed and stitch together their different narratives to present interesting pictures of how they construct ideas about science, scientists, and their place in the world of science. Sometimes I do both in the same presentation. This makes for a lot of variety in the way I share my work. But every time I present, regardless of the methods or the specifics I’m discussing on that particular day, the same thing happens. 

After my talk, a fresh faced young teacher (or researcher) will come up, thank me for my talk, tell me my program sounds amazing, and then ask THE QUESTION. I really hate THE QUESTION. “So,” they say, “what curriculum do you use at SPICE camp?” Then I run screaming from the room, gnashing my teeth, and rending my nice suit jacket. 

OK, I don’t really do that. Nor do I shout, “You clearly weren’t LISTENING!”  

Now you are wondering, what kind of educator is this woman? Isn’t the goal of teaching for people to learn things? Don’t you need curriculum [1] to learn things? Aren’t you teaching science?

Well yes, of course we have curriculum. If I were to describe it I think our curriculum is like disco lighting. Shiny, eclectic, and constantly shifting. Don’t get distracted by the moving shiny lights! You are here to DANCE! 

Image Credit: B. Todd

Image Credit: B. Todd

Many outreach programs are sponsored by professional societies or grants that have a learning outcome agenda. If the people footing the bill are the international society of women in engineering, then you better bet they want the participants to be learning about engineering, not plant biology. Curriculum is going to be the main focus of such a program. Which is great, but it’s only address a small slice of the problem. We don’t just have a problem with women in engineering, or computer science, or physics (though these are the most problematic areas with regards to women in STEM [1] ), we’ve got a blanket problem with women not choosing STEM at all.

Remember, gender disparities in STEM are not the result of ability or achievement differentials. They are the result of choices made by humans. Girls are learning the same curriculum as boys, but they aren’t choosing STEM, and when they do, they are disproportionately choosing to leave STEM. 

What makes the SPICE approach to science outreach different is the emphasis on implementation. The content is nowhere near as important as HOW it is delivered [2]. Many schools have adopted high quality science curriculum and spent a lot of time and money training teachers to use that curriculum. States have invested millions of dollars in curriculum and assessments. We now have Next Generation Science Standards, which on balance, I think are pretty good. And yet. Girls are still opting out of science. We still have a massive gender gap in STEM and no fancy curriculum will fix that. Remember, girls achieve in science just fine. What they don’t do is CHOOSE science.

Why don’t they choose science? Because science isn’t choosing them.

This is why I don’t like THE QUESTION. The question implies that if we just get the perfect curriculum suddenly all the doors will open up and we will have fixed this “girl problem” in STEM. As I’ve stated before in this blog. We don’t have a “girl problem” we have a STEM culture problem. 

Curriculum is incredibly important in how students learn, but it won’t fix the “soft” elements of inducting students into the culture and identity of STEM practitioner. When social messages, stereotypes, and classroom dynamics all signal STEM as the domain of a certain type of white (or Asian) male, all the good curriculum in the world will not make it more attractive to women. There is a reason women out number men in nursing nine to one. It’s not because nursing schools do a better job of teaching medicine to women than men, it’s because men do not see themselves as nurses. This is despite the fact that nursing can be a physically demanding job requiring an authoritative demeanor and high level of technical expertise, all characteristics typically associated with masculine professions. But that’s not how nursing is thought of in our culture. Nursing evokes images of caring and nurturing more traditionally associated with the feminine. Similarly, girls do not see themselves in most STEM careers which are typified as isolated, requiring exceptional intelligence, and lacking in connections to the human experience.

Research shows that, at all levels, girls have fewer encounters with science, have fewer hands on science opportunities, and are less likely to be recognized for scientific accomplishments. If we want girls to view science careers as “thinkable” we have to provide the same motivational reinforcements to them that boys receive as a matter of course. When parents ask me about how they can find experiences like the SPICE program for their sons I want to shout, “The whole world is SPICE for boys!”

This is where having a good understanding of motivational theory comes in. If we know what is missing from girls STEM experiences then what can we do to fill in that gap? What are the concrete actions that teaches and parents and girls can take to build enduring interest in STEM education and careers? This blog will go into these topics individually in more detail over the next few months, but for now, here is the shortlist of motivational theories I use in my work and research and some quick notes about the implications of each.

Self-Efficacy

Based in the work of Albert Bandura, whose Bobo Doll experiment is both entertaining and terrifying to parents everywhere, Self-Efficacy, stated simply is an individuals’ belief in her ability to successfully complete a task. Note the emphasis on belief in this definition. Competence is often associate with self-efficacy, but not always, and the relationship goes both ways, building competence can build self-efficacy and building self-efficacy has been shown to contribute to increased competence. Self-efficacy development is a complicated process that involved interplay between the individual, mentors and peers, and the environment. Suffice it to say, our culture and educational system falls short of supporting girls STEM self-efficacy in many ways.

Identity

Psychologist Erik Erikson developed a theory of psychosocial development that identified 8 stages of identity development spanning from infancy to death. Each of these stages is imagined as a conflict that must be successfully resolved within the individual. One key stage that researchers, parents, and teachers or interested in is Identity vs. Role confusion. This is the stage that overlaps with adolescence and relates to a lot of identity work that starts up around the middle school years. Successful identity integration requires a series of cyclical processes that involve trying on new identities, receiving feedback about the suitability of identities, and shifting identity expressions.

This process is most visible in teens who heavily associate identity with alignment to cultural icons like musicians, artists, and actors. Dress becomes an important means of expressing identity for this age group and they are particularly alert for criticism and messages disconfirming belonging to a particular group or identity. Navigating complex, ever looming gender identities is a major component of this phase and the need to find an appropriate and meaningful gender expression can often run contrary to the expressions of a STEM identity. Girls who feel they must choose between their gender and interest in STEM will feel enormous pressure to conform to gendered expectations.

Interest Formation

Interest development is another area necessary for adopting a STEM orientation to the world. That is, people generally need to be interested in something to spend much time working toward it. In my work and research, I use the Four Phase model of Interest development delineated by Hidi and Renninger. This model identifies ways in which people engage in their interest and how interest can be scaffolded to develop from simply noticing and passively observing a subject of interest to becoming an expert who is able to pose novel questions and sustain their interest through self-driving inquiry and engagement. 

Many people, and especially children, have a situational interest in science (everyone likes a good science demonstration with fire or big chemical reactions). The key to building enduring interest is supporting students in developing a deeper, self-sustaining, personal interest in STEM topics. 

Mindsets

Carol Dweck and colleagues noticed some interesting anomalies in their research with children. First, they found that some students relished challenges that were likely to result in failure, while others avoided them at all costs. They also noticed that girls who were otherwise quite willing to take risks, were more likely to adopt the avoidant approach to math and science challenges. From this research Dweck developed the theory of mindsets. In a nutshell, some people view their intelligence in a particular domain as fixed, not capable of changing. For these individuals, failure is a signal of lower intelligence, and something to be avoided, particularly by those who generally thing of themselves a bright. Other individuals view their intelligence as malleable and capable of change with practice, and yes, the occasional failure. These individuals have a growth mindset, and relish challenge as an opportunity to learn and . . . well, grow.

The crazy things about mindsets is that life, self-efficacy, they can be very specific.  One individual can have a patchwork of growth and fixed mindsets. Many girls, who are identified as gifted and are willing to take risks in say, English class, may avoid similar behavior in a math setting, where the cultur stereotypes identity the domain as the realm of men and something that requires an innate talent that some people simply do not have.

Dweck and her colleagues have identified a host of behaviors and approaches to teaching that can help foster a growth mindset and an equally large list of practices that undermine girls in math and science.

******

[1] STEM = Science Technology Engineering Mathematics

[2] Am I the only one who thinks the word curriculum is just a pretentious way of saying, “stuff you learn?” Yeah, I probably am.

 [3] Yes, of course the content is important! Trust me, I’m a total hard-ass, demanding that the content be legitimate science with clearly delineated facts, concepts, and learning outcomes. I just don’t particularly care what facts/concepts/learning outcomes they are! [4]

 [4] Of course I care what they are. But only a little.

What is science affinity?

A huge part of raising baby academics involves pounding and shaping them into tiny little boxes [1]. We call this process “grad school” and it involves a lot of being told just how wrong and misguided every idea you ever had was, is, and will continue to be. 

A semi-apt metaphor would goes as follows:

You arrive at a feast. A near infinite assortment of foods is displayed before you, each more appetizing than the last. Many kindly mentor-like figures stand around you smiling. They lead you around the table extolling the virtues of each food, but whenever you reach for an item, they begin shouting and waiving their arms madly. 

“YOU CAN ONLY HAVE ONE!” 

And then they begin ferociously detailing to you all the things about your chosen snack that totally suck, while fervently encouraging you to just go ahead and choose something already!

Peas don’t care about affinities. They just like hanging out in pods together.Image credit: B. Todd

Peas don’t care about affinities. They just like hanging out in pods together.

Image credit: B. Todd

Now, to be fair, a most individuals new to research have some pretty unrealistic ideas about what they can accomplish in a finite amount of time with limited resources and have an even vaguer understanding of what it is they actually want to do (beyond, “Change the World!”). So, a lot of the work mentors do is trying to get students to narrow down their ideas into something coherent and doable.

What does this have to do with science affinity? Let me tell you!

As a not-so-long-ago baby academic myself, I was faced with a conundrum. As a baby academics go, I had a leg up on many of my peers. I knew exactly which snack I wanted (maple donut, thank you), what the implications of that snack were (Hello, newer, roomier jeans [2]), and where I could find my snack. In fact, I’d been working on my project already before starting my PhD program. I wanted to investigate the impacts of the SPICE program on girls science identities. I was just missing one thing, a way to measure those impacts. Here’s the thing, though, academics measure things and academics create things-that-measure-things[3]. But baby academics really need to pick just one. So you can either 

Measure things and talk about what you measured 

OR 

Create a thing-that-measures-things and talk about how that thing you made that measures things works.

It’s pretty challenging to do both. You have to pick.

I still don’t get what this has to do with science affinity?

I’m getting there! I’m getting there!

So, I was really much more interested in measuring identity in SPICE girls than I was in creating a new fangled instrument to measure identity [4]. So what do you do if you want to measure something and you don’t have time to reinvent the ruler? Well, you do what everyone in my family does, raid mom’s tool box [5]. In this case, moms tool box is stuff made by other researchers. Fortunately, other researchers actually like it when you take their tools, unlike moms, who would like not to have all there stuff lost under a mountain of legos. 

Otters together. Cuteness squared.Image credit: B. Todd

Otters together. Cuteness squared.

Image credit: B. Todd

I knew I wanted to measure girls science identities. I knew I needed to do it with survey questions, and I knew that 11 year old girls have about a 2 page/30 question tolerance for filling out surveys. That’s under the BEST circumstances. So I went looking for what other researchers had done before. Nice juicy, validated instruments were what I needed. After trawling the depths of Google Scholar I found nine scale measures that seemed to mostly fit the bill. What I didn’t find, was a simple measure of science identity. Go figure! Identity might be something complex and not easily measured in a handful of ordinal scale questions [6].

So, I cobbled together parts of the nine scale measures I’d found and I snuck in a four question scale measure of identity I’d made up for a pilot study a year earlier (hello tiny eclair, I filched from the infinite snack table while my advisor wasn’t looking) and thus was born . . . well, a three page survey that was really boring.

BUT! I tested it with SPICE kids, and I ran some factor analyses [7] and thus a slightly less boring two page survey that made some sort of thematic sense emerged.

One snail, two snail. Brown snail, slime snail.Image credit: B. Todd

One snail, two snail. Brown snail, slime snail.

Image credit: B. Todd

This two page survey contained four clusters of questions. These clusters measured science identity (or something like science identity), expectancy value for science, science self-efficacy, and attitudes toward science. Now, constantly typing out those four things got rather boring for me so I needed to come up with a name that encapsulated the whole suite of measures . . . and voilà, science affinity was born.

Fortunately, though my process for getting to affinity was rather haphazard, it turns out that these four items actually share something in common. They all fall under the heading of motivational research, and that’s what I do. I measure motivation for science using an amalgam of motivational theories that I call science affinity.

So when I use the term science affinity in this blog what I mean is:

  • Do they think science is cool?

  • Do they think science is valuable?

  • Do they think they’re good at science?

  • Do they think of themselves as scientists?

And that’s about it. Science affinity. The homunculus maple bar-éclair that is my snack of choice. 

Of course, I wasn’t really satisfied with one mashed up snack, but I’ll talk about my qualitative research in other posts. Hello, Pumpkin pie-maple bar-éclair.

~~~~~

[1] I have many thoughts about this. 

[2] Only half joking. Grad school really can pack on the pounds. I went from a mean lean triathlon running machine to a strange goblin creature hiding in a corner closet cramming maples bars in to my face and rocking back and forth singing the theme song to Sponge Bob Squarepants.

[3] We call them instruments. They generally do not produce sound.

[4] I still totally want to do that and if you happen to know 400-600 girls ages 11-14 who don’t mind taking a bunch of surveys please call me.

[5] All the pink labeling tape in the world won’t keep my husband and son from 5-fingering my measuring tape and nice rubber handled pliers. GAH!

[6] What’s an ordinal scale question, you ask? Actually, you already know. You just don’t know that you know. It’s what is famously called an “unknown, known.” Which is to say, they’re those questions people call you on the phone to ask. “If you were to rate your interest in having a full service toe waxing station at your work would you say you are: very disinterested, disinterested, neither interested nor disinterested, interested, or very interested?” 

[7] That’s a mathematical way of finding out which of the items on your survey are the “cool kids” who want to hang out together. And which are the sad kids, who have to eat lunch alone.

A list of all the survey instruments I filched from other researchers.

Cause it’s only stealing if you don’t give credit!

Adams, W. K., Perkins, K. K., Podolefsky, N. S., Dubson, M., Finkelstein, N. D., & Wieman, C. E. (2006). New instrument for measuring student beliefs about physics and learning physics: The Colorado learning attitudes about science survey. Physical Review Special Topics-Physics Education Research, 2(1).

Else-Quest, N. M., Mineo, C. C., & Higgins, A. (2013). Math and science attitudes and achievement at the intersection of gender and ethnicity. Psychology of Women Quarterly, 37(3), 293-309.

Germann, P. J. (1988). Development of the attitude toward science in school assessment and its use to investigate the relationship between science achievement and attitude toward science in school. Journal of Research in Science Teaching, 25(8), 689-703.